
Section 6 
Very Large Scale Methods 



6.1 MATRIX-FREE METHODS 
CONVERGENCE FRAMEWORK 



Matrix Free Methods 
•  Parallel  computing: avoid factorization and return only matrix-vector 

products (and not matrices) .  

 
•  The last version in particular can be particularly efficiently carried out 

with Automatic Differentiation.  
•  Most common algorithms in optimization: Krylov Algorithms (Lanczos, 

modified CG).  
•  But I must deal with early termination (I will not wait n steps) and 

indefinite matrices.  

d! Model ! B*d

d, xk ! Model !"xx
2 f (xk )* x



Framework for Early termination: Inexact Newton 
Methods 

•  We modify the original Newton method: 

•  The residual:  

•  CG loop termination rule 

!2 fk pk " #!fk

!k " 0

Forcing sequence 



Convergence Result 

•  Main Result: 

•  Note: if sequence is forced, superlinear convergence will occur!  



6.2 KRYLOV-TYPE METHODS FOR 
NONLINEAR UNCONSTRAINED 
OPTIMIZATION 



Main Concern:  

•  How do I deal with indefiniteness of the matrices, since CG 
works only for positive definite matrices?  



Line-Search CG 

Note double 
iteration  

•  How  come it works? 
CG itself is a descent 
method !!!  

•    



CG-Trust Region (STEIHAUG) 

•  Only inner loop. 
•   Define forcing 

sequence as LS-CG  
•   Iterate in x. 

•    



6.3 LANCZOS ALGORITHMS 
FOR UNCONSTRAINED 
OPTIMIZATION 



A shortcoming of CG methods 

•  They accept even SMALL negative curvature foregoing more 
promising directions.  

•  Solution: try to approximate the spectrum of the Hessian, using 
the Lanczos algorithm 
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•  The conjugate gradient algorithm minimizes a quadratic function 
with a symmetric positive-definite Hessian: 

Conjugate Gradients and Lanczos Algorithm (Tremolet) 

  The algorithm is: 
step to the line minimum 

recalculate the gradient 

calculate a new direction  

where: 

  Eliminate     to get the 3-term recurrence (Lanczos): 



Lanczos Orthogonalization Procedure 

•  It orthogonalizes the Krylov space 

 
•  But the iteration works even if the matrix is NOT positive 

definite !!! 

•  The coefficients are found without needing d; by just eliminating 
g_(k+2). EXPAND 

  (K2) ! Sk = r0 ,Ar0 ,…,Ak"1r0{ } = Kk A,r0( ) (K2)
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Conjugate Gradients and Lanczos Algorithms 

•  Let      be the matrix whose columns are            . 

•  Then  
     where        is tri-diagonal and 

•  After       iterations, we get                          . 

•  i.e.      has the same eigenvalues as       . 

•  Intermediate matrices have interleaving eigenvalues: 

•  Even for               , “the spectrum range” is well approximated. 



Lanczos Iteration 

Unless it breaks down, produces orthogonal basis of 
Krylov space and a tridiagonal matrix similar to A. 



Lanczos iteration 



Lanczos iteration 



Tridiagonal System 

•  Tridiagonal matrices are EXTREMELY easy to 
factorize, solve with, and find eigenvalues of (if 
symmetric).  

•  u = [u1, u2, …, un-1] 
•  d = [d1, d2, …, dn-1, dn] 
•  l = [l1, l2, …, ln-1]  
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LU decomposition of Tridiagonal Matrix 
(Cholesky similar) 
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Using Lanczos for Optimization 

•  Solve trust-region (inner loop):  

•  Note, however, that you must store ALL vectors.  
•  But you will not truncate a promising direction just before it 

gives a negative inner product.  
•  Iteration continues, until a similar stopping test is reached (i.e 

residual=gradient is small) 


